
Scalable Computing for Power Law Graphs:
Experience with Parallel PageRank

David Gleich
∗

Stanford University, ICME
Leonid Zhukov

Yahoo!

Abstract
In this paper we report on the behavior of parallel numerical
algorithms applied to computing the PageRank vector for a
1.5 billion node directed webgraph. We also describe the
details of our parallel implementation that was able to com-
pute the PageRank vector for this webgraph on a distributed
memory 140 processor RLX cluster in under 6 minutes.

Historically, much of the work in parallel computing has
been focused on the numerical solutions of problems arising
from the engineering and physical sciences. The graphs used
in these problems are either regular, e.g. a grid, or have
slight variance in the number of nearest neighbors. Most of
the widely used parallel computing toolkits are devoted to
solving such problems and follow this paradigm.

Numerical problems arising in data mining and informa-
tion retrieval have quite different properties. First, the data
is already discrete and there is no continuous representation
possible. Second, there is no low-dimensional space easily
associated with the data. The third and most important
difference from standard scientific computing datasets is the
presence of a power law distribution in the graph. A power
law graph is defined by the property that the number of ver-
tices with degree k is proportional to k−β for the power law
exponent β. In such a graph there are a few vertices with
high degrees and many vertices with low degrees. These
properties yield unusual graphs compared to the regularity
of finite difference or finite element graphs.

We will focus on webgraphs and a parallel PageRank com-
putation. The PageRank algorithm is a method for com-
puting the relative rank of web pages based on the Web link
structure. The model involves a directed graph of hyperlinks
(edges) between web pages (nodes), a teleportation coeffi-
cient c, and a teleportation vector v. One interpretation of
a page’s PageRank is the probability of finding a random
surfer on that page when the surfer randomly follows links
between pages and restarts at a page in v with probability
(1 − c)vi. PageRank computations are a key component of
modern Web search ranking systems.

Traditionally, PageRank has been computed as the prin-
ciple eigenvector of a Markov chain probability transition
matrix using a simple power iteration algorithm. We con-
sider the PageRank linear system formulation and iterative
methods for its solution. There are two requirements for
the iterative linear solver: i) it should work with nonsym-
metric matrices and ii) it should be parallelizable. Because

the matrix is strongly diagonally dominant, we consider sta-
tionary Jacobi iterations as well as several Krylov subspace
methods.

Our parallel computer was a cluster of RLX blades con-
nected in a fully connected topology with gigabit ethernet.
We had twelve chassis composed of 10 dual processor Intel
Xeon blades with 4 GB of memory each (240 processors, and
480 GB memory total). The parallel PageRank codes use
the Portable, Extensible Toolkit for Scientific Computation
(PETSc) to implement basic linear algebra operations and
basic iterative procedures on parallel sparse matrices.

In our experiments we used seven Web related directed
graphs. The av graph, the Alta Vista 2003 web crawl, has
1.4B nodes and 6.6B edges. We also constructed and used
three subsets of the av graph (edu, yahoo-2, yahoo-3) and a
Host graph (70M nodes, 1B edges), obtained from a Yahoo!
crawl by linking hosts through agglomerated links between
pages on separate hosts.

In summary, the main results of our experiments show
that:

• The power and Jacobi methods have approximately
the same behavior.

• The convergence of Krylov methods strongly depends
on the graph and is non-monotonic.

• Although the Krylov methods have the highest average
convergence rate and fastest convergence by number
of iterations, on some graphs, the actual run time is
longer than simple power iterations.

• BiCGSTAB and GMRES have the highest rate of con-
vergence and converge in the smallest number of iter-
ations. and GMRES demonstrates more stable behav-
ior.

• The best method to use is either power iterations or
BiCGSTAB. The final choice of method is dependent
on the time of a parallel matrix-vector multiply com-
pared with the time of the extra work performed in
the BiCGSTAB algorithm.

• The BiCGSTAB algorithm scales better than power
iterations due to the parallelism in the extra work per-
formed.

Using our parallel implementation, we reduced the time to
compute a PageRank vector on a full webgraph from 10
hours to 5.5 minutes.



(a) Computational methods

1

RLX RLX RLX

RLX Blades
Dual 2.8 GHz Xeon
4 GB RAM
Gigabit Ethernet
120 Total

MPI

PETSc

Parallel PageRank

Gigabit Switch

Off the shelf

Custom

(b) Block structure

Figure 1: Our Parallel PageRank System.

0 10 20 30 40 50 60 70 80
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration

E
rr

or

uk iteration convergence

std
jacobi
gmres
bicg
bcgs

(a) Convergence Iterations

0 5 10 15 20 25 30 35 40
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Time (sec)

E
rr

or

uk time convergence

std
jacobi
gmres
bicg
bcgs

(b) Convergence Time

Figure 2: Convergence of iterative methods on the uk Web graph.

100% 125% 150% 200%
0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

P
er

fo
rm

an
ce

 In
cr

ea
se

 (
P

er
ce

nt
 d

ec
re

as
e 

in
 ti

m
e) Scaling for computing with y3 std−gmres

std
gmres

(a) Power iterations and GMRES on y3.
90% 100% 110% 120% 130% 140% 150% 160% 170%

0%

50%

100%

150%

200%

250%

P
er

fo
rm

an
ce

 In
cr

ea
se

 (
P

er
ce

nt
 d

ec
re

as
e 

in
 ti

m
e) Scaling for computing with full−web

std
bcgs

(b) Power iterations and BiCGSTAB on av.

Figure 3: Parallel scaling performance of our algorithms. In both cases, we see that the KSP methods,
BiCGSTAB (bcgs) and GMRES, scale better than power iterations (std).


